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WHAT IS TRUSTED AI?

“Trusted Al is collective termed ethical guidelines that one should follow so as to avoid problem of accidents
in machine learning systems, unintended and harmful behavior that may emerge from poor design of
real-world Al systems.”
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WHY DO WE NEED TRUSTED AI?

BIAS IN INTELLIGENT SYSTEMS

BOB

SELF DRIVING CAR GOES wtﬁ« f 1\-\

ROGUE, 2021 %%éw;fw

%
FACEBOOK ROBOTS A e
COMMUNICATE IN A NEW = g
st R ‘ JAPANESE
HANGUAGE, 2017 e LITERARY PRIZE
SELF DRIVING CAR KILLS,
2018



EXAMPLES OF CONCRETE PROBLEMS

Robustness to distributional shift

Negative Side Effects

How can we ensure that
the cleaning robot won’t
hack its reward function?
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How can we ensure that
the cleaning robot
respects aspects of

the objective that are
too expensive to be
frequently evaluated
during training?

How do we ensure the
robot will not disturb
the environment in
negative ways while
pursuing its goals?

Machine learning model is
trained on one distribution (p )
but deployed on a potentially
different test distribution (p*)




ACCURACY VS INTERPRETABILITY TRADEOFF

Neural Networks Al - Data-Based

Trained Deep Learning
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. Neural Networks
. Ensemble Methods (Random Forest, ...)
. Support Vector Machine

Graphical Models

@ Decision Trees
@ Regression Algorithms
@ Classification Rules

Explainability



VISION BASED DEEP LEARNING

Why is this Image being miss predicted?

Convolutional Neural Networks use some high dimensional
components for classification. They use layers that are highly
nonlinear and non interpretable. Human Beings use both
pattern matching and deduction for object recognition.
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Adding noise imperceptible to human beings can Learning wrong features

change the prediction of the Network.



BROAD METHODS FOR TRUSTED Al
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Explaining the Model . .

Combining Classical Al
with Deep Learning

Safe/Verified Al

CNN +
Decision Trees

RL + PLANNER

REWARD
FORMAL MODELLING /
METHODS GRADIENT

UPDATES



LOCAL INTERPRETABLE MODEL AGNOSTIC EXPLANATIONS
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LOCAL INTERPRETABLE MODEL AGNOSTIC EXPLANATIONS

Weight based on distance
from the chosen point

Build Black-box model

Generate random points

Train the model and use

Predict the new points
for explanation

Choose an explainable model with biackcbox

\
Generalized Additive Model

(a) Original Image (b) Explaining Electric guitar  (c) Explaining Acoustic guitar (d) Explaining Labrador
Figure 4: Explaining an image classification prediction made by Google’s Inception network, high-
lighting positive pixels. The top 3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar”
(p = 0.24) and “Labrador” (p = 0.21)
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COUNTERFACTUAL AND ADVERSARIAL EXAMPLES

A counterfactual is the smallest change in the input features, that changes the prediction to another (predefined) output.
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Counterfactual Explanations Velocity >= 10 l—‘ Adversarial Examples

argmin,, d(x,x")

st fx') =

Velocity - 10>=0 o Query with Input
Optimizer

Find Inputs such that t

+.007 x

; T+ itv = <
z sign(VJ (0, x,y)) ssign(V. J(0,2,9)) VGlOClty 10<0
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Example : Velocity =9

Adversarial Attacks Observe output



NEURO SYMBOLIC Al
Rational\

Perceptions

Desired Results Explicit Program
lessThan( , ) = True a : cnn(x)(x, y):
| t b = cnn(y)
nputs return foo(a, b)
lessThan( 5 ) = True P » -

lessThan( 5 ) = False

eee eturn f;;(x. z)
Patt \/94) def (x, y):
atterns
® =

Training

NEURO SYMBOLIC Al Loop

Predicts Revises

NEURAL NETWORKS KNOWLEDGE GRAPHS Predicted Results
Validates

SPIKES CAPSID lessThan( E ' ) = True
lessThan( b ) = False
lessThan( / ) = False
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NEURO SYMBOLIC LEARNING - VISION

7. 48% 0: 62% 3: 50% Learn components
using a machine

learning model.

1: 44% 6: 30% 5: 50%
P:49% U:65% N:65%

N &=

D:39%  V:29%  W:45%

Real world tokens can
show membership in

multiple classes.
Break the image into components and relations. Symbolic computation

Represented using stochastic context free grammar. cannot capture the

variations.




COMBINING CNN AND DECISION TREES

Companents YOLOVA(Image) ' |€ Blur previously identified

parts
y

>=2 wheels and

>=1 frame detected threshold>=lower limit N2
A Identified components within range:
- lNo [2 wheels, 1 frame]
Not Bicycle
Distances No > >=1 wheel and Reduce threshold
within range >=1 frame detected for YOLOv3
Yes Yes
Distances B
within range » >=2 wheels detected
\ Yes No

satisfies similarity

constraint Distances Yes

within range

o No
Yes No No
/ e Not BICyCle

Bicycle Not Bicycle  Not Bicycle

>=1 frame detected




PLANNING AND REINFORCEMENT LEARNING
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PROGRAM GUIDED REINFORCEMENT LEARNING

# Language Instructions Ground Truth Program Alternative Interpretation
. ) : def run(): def run():
".m Is' a niver, b“"f‘ a if is_there[River]: if is_there[River]:
bridge. Repeat the followings build_bridge() build_bridge()
3 times: mine a gold, and if loop(3): loop(3):
@1 cnvironment has no more mine(Gold) mine(Gold)
than 8 gold, mine iron, and if °""[°‘(’édldj= 8: if '"Vm‘(’é"{dT 8
then sell an iron. mine{Co mine(Go
oot et sell(Iron) sell(Iron)

Program
def run():
if is_there[River]: POfCGptIOﬂ
mine (Wood) Module
()
if agent[Iron]<3: State ._.@ L
mine(Iron)
def run():
place(Iron, 1, 1) Q!IE
else: while env[coid] > D: Y Response Policy Action ¥
; Environment
goto(4, 2) mine( )
while env[Gold]>0: —— if ie_there|River|:
mine (Gold) build bridge()
place(¥ood, 2, 3) [ O Module < Module Output ]

Program Program Interpreter




PROGRAM GUIDED REINFORCEMENT LEARNING
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ROUTE BASED SCENARIO

Corl2017 MP |RL |CIRL |HPRL

Task

Straight 50 |68 |98 100

One Turn 50 |20 |80 100

Navigation |47 |6 68 100

Navigation |47 |4 62 100 2 o e f

DynamiC ViE;if;LIEIV;L;CKED BY LEAD]N(;,{’;:;Z:LE : Supervisor applying break




INCLUDING SAFETY AS A PART OF THE MODEL

CapColor

Data on mushrooms found in an island

CapShape CapColor GillColor | Poisonous Decision Tree learned

from the data

Bell Pink Green Poisonous

Bell Pink White Poisonous

Bell Pink Gray Poisonous

Convex Pink Gray Poisonous

C Pink B Poison . . .
Cg:zg); V\I/?mite B:gx: Pg::gng:j: * There is no data on mushrooms having CapColor # Pink,
Convex White White Poisonous CapShape = Bell and GillColor = Green

Convex White Gray Poisonous

Convex Yellow Brown Edible ) ,

Convex Yellow Gray Edible * Suppose mushrooms having CapShape = Bell and GillColor =
Convex Yellow White Edible Green are poisonous

Bell Yellow White Edible

Bell Yellow Gray Edible

Bell Yellow Brown Edible ... The decision tree will recommend such a mushroom to
Bel White Brown Edible be eaten if it's CapColor = Yellow, because it generalizes all
Bell White Gray Edible . _ .

Bell White White Edible mushrooms with CapColor = Yellow to be edible.

Moral: Safety needs a default bias. This can be achieved by biasing the Information Gain metrics.



INCLUDING SAFETY AS A PART OF THE MODEL
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